NAME Key

LINEAR ALGEBRA/MATH 270 SHANNON MYERS

PLEASE MAKE SURE YOU ARE TAKING THE CORRECT EXAM FOR YOUR CLASS!!!

$\pi 100$ POINTS POSSIBLE
π YOUR WORK MUST SUPPORT YOUR ANSWER FOR FULL CREDIT TO BE AWARDED
π SCIENTIFIC CALCULATOR ONLY
π NO NOTES, AND/OR FORMULAS PERMITTED
π PROVIDE EXACT ANSWERS UNLESS OTHERWISE INDICATED

ONCE YOU BEGIN THE EXAM, YOU MAY NOT LEAVE THE PROCTORING CENTER UNTIL YOU ARE FINISHED...THIS MEANS NO BATHROOM BREAKS!

EXAM 1/Chapter 1-2.2 OF THE ELEMENTARY LINEAR ALGEBRA WORKBOOK 100 POINTS POSSIBLE
YOUR WORK MUST BE ORGANIZED AND CLEAR
SCIENTIFIC CALCULATOR ONLY

1. (6 POINTS) Find the solution set of the system of equations represented in the coefficient matrix of a homogeneous system of equations. If applicable, please parameterize.
$\left[\begin{array}{rrrr}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & -5 \\ 0 & 0 & 1 & 0\end{array}\right]$
$\left[\begin{array}{llllll}1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & -5 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0\end{array}\right]$
augmented matrix

$$
\left.\begin{array}{rl}
x_{1}+x_{3}= & 0 \rightarrow x_{1}=x_{3}=0 \\
x_{2}-5 x_{4}= & 0 \rightarrow x_{2}=5 x_{4}=5 t \\
x_{3}= & 0 \rightarrow x_{3}=0 \\
x_{4}=t
\end{array}\right\}
$$

2. (10 POINTS) Please circle true or false.
a. T F A homogeneous system of equations only has the trivial solution.
b. T F Multiplication of matrices is commutative.
c. T

A set $S=\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{k}\right\}, k \geq 2$ is linearly independent if and only if at least one of the vectors \mathbf{v}_{i} can be written as a linear combination of the other vectors in S.
d. T F The transpose of the product of two matrices of order n is equal to the product of the transposes.
e. T F There is only one way to parametrically represent the solution set of a linear equation.
3. (8 POINTS) Prove the following distributive property for vectors in R^{n} :

$$
(c+d) \mathbf{u}=c \mathbf{u}+d \mathbf{u}
$$

Pf: Let $\vec{u}=\left(u_{1}, u_{2}, \ldots, u_{n}\right) \rightarrow u_{i} \in \mathbb{R}$ for $i=1,2, \ldots, n$. Let $c, d \in \mathbb{R}$.

$$
\begin{aligned}
(c+d) \vec{u} & =(c+d)\left(u_{1}, u_{2}, \ldots, u_{n}\right) \\
& =\left((c+d) u_{1},(c+d) u_{2}, \ldots,(c+d) u_{n}\right) \text { def of vector scalar mult } \\
& =\left(c u_{1}+d u_{1}, c u_{2}+d u_{2}, \ldots, c u_{n}+d u_{n}\right) \mathbb{R} \text { is dist, over addition } \\
& =\left(c u_{1}, c u_{2}, \ldots, c u_{n}\right)+\left(d u_{1}, d u_{2}, \ldots, d u_{n}\right) \text { def of vector add ition } \\
& =c \vec{u}+d \vec{u} .
\end{aligned}
$$

4. (10 POINTS) Determine whether the set $W=\{(s, t, 3 s-4 t): s, t$ are real numbers $\}$ is a subspace of R^{3} with the standard operations.
W is a nonempty subset of R^{3}, since $(0,0,3 \cdot 0-4.0)=(0,0, \Delta) \in W$ and R^{3}.
Let $\vec{u}=\left(u_{1}, u_{2}, 3 u_{1}-4 u_{2}\right), \vec{v}=\left(v_{1}, v_{2}, 3 v_{1}-4 v_{2}\right) \rightarrow u_{i}, v_{i} \in \mathbb{R}$ for $i=1,2$. let $c \in \mathbb{R}$.
closure under t

$$
\begin{aligned}
\overrightarrow{\vec{u}+\vec{v}}= & \left(u_{1}, u_{2}, 3 u_{1}-4 u_{2}\right)+\left(v_{1}, v_{2}, 3 v_{1}-4 v_{2}\right) \\
= & \left(u_{1}+v_{1}, u_{2}+v_{2},\left(3 u_{1}-4 u_{2}\right)+\left(3 v_{1}-4 v_{2}\right)\right) \text { defn of vector t } \\
= & \left(u_{1}+v_{1}, u_{2}+v_{2},\left(3 u_{1}+3 v_{1}\right)+\left(-4 u_{2}-4 v_{2}\right)\right) \mathbb{R} \text { is commutative } \\
= & \left(u_{1}+v_{1}, u_{2}+v_{2}, 3\left(u_{1}+v_{1}\right)-4\left(u_{2}+v_{2}\right)\right) \text { R is distributive } \\
& \in W . J
\end{aligned}
$$

closure under scalar mull

$$
\begin{aligned}
\overrightarrow{C \vec{u}} & =c\left(u_{1}, u_{2}, 3 u_{1}-4 u_{2}\right) \\
& =\left(c u_{1}, c u_{2}, c\left(3 u_{1}-4 u_{2}\right)\right) \text { defn st }{ }^{+} \text {scar alar malt } \\
& =\left(c u_{1}, c u_{2}, c\left(3 u_{1}\right)+c\left(-4 u_{2}\right)\right) \mathbb{R} \text { is dist. } \\
& =\left(c u_{1}, c u_{2}, 3\left(c u_{1}\right)-4\left(c u_{2}\right)\right) \mathbb{R} \text { is comm. } \\
& \in W \cdot
\end{aligned}
$$

W is a subspace of R^{3}
5. (16 POINTS) Consider the following matrices A, B, and C.

$$
A=\left[\begin{array}{rrr}
1 & 3 & 2 \\
4 & 0 & 1 \\
-6 & 9 & 7
\end{array}\right] \quad B^{T}=\left[\begin{array}{rrr}
2 & -1 & 3 \\
0 & 13 & 1 \\
1 & -1 & 0
\end{array}\right] \quad C=\left[\begin{array}{c}
-1 \\
5 \\
10
\end{array}\right] \quad B=\left[\begin{array}{ccc}
2 & 0 & 1 \\
-1 & 13 & -1 \\
3 & 1 & 0
\end{array}\right]
$$

a. (4 POINTS) Find $A-3 B$.

$$
\begin{aligned}
& =\left[\begin{array}{ccc}
1 & 3 & 2 \\
4 & 0 & 1 \\
-6 & 9 & 7
\end{array}\right]+\left[\begin{array}{ccc}
-6 & 0 & -3 \\
3 & -39 & 3 \\
-9 & -3 & 0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-5 & 3 & -1 \\
7 & -39 & 4 \\
-15 & 6 & 7
\end{array}\right]
\end{aligned}
$$

b. (5 POINTS) Find $A C$.
c. (7 POINTS) Find $(A B)^{T}$.

$$
\begin{aligned}
(A B)^{\top} & =B^{\top} A^{\top} \\
& =\left[\begin{array}{ccc}
2 & -1 & 3 \\
0 & 13 & 1 \\
1 & -1 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 4 & -6 \\
3 & 0 & 9 \\
2 & 1 & 7
\end{array}\right] \\
& =\left[\begin{array}{ccc}
5 & 11 & 0 \\
41 & 1 & 124 \\
-2 & 4 & -15
\end{array}\right]
\end{aligned}
$$

6. (8 POINTS) Determine the polynomial function whose graph passes through the points $(2,5),(3,2),(4,5)$.

$$
\begin{aligned}
& p(x)=a_{0}+a_{1} x+a_{2} x^{2} \\
& p(2)=5=a_{0}+2 a_{1}+4 a_{2} \\
& p(3)=2=a_{0}+3 a_{1}+9 a_{2} \\
& p(4)=5=a_{0}+4 a_{1}+16 a_{2} \\
& a_{0}+2 a_{1}+4 a_{2}=5 \\
& a_{0}+3 a_{1}+9 a_{2}=2 \rightarrow\left[\begin{array}{llll}
1 & 2 & 4 & 5 \\
1 & 3 & a & 2 \\
1 & 4 & 16 & 5
\end{array}\right] \\
& a_{0}+4 a_{1}+16 a_{2}=5 \quad-\quad-R_{1}+R_{2} \rightarrow R_{2} \\
& {\left[\begin{array}{ccc:c}
1 & 2 & 4 & 1 \\
0 & 1 & 5 & -3 \\
1 & 4 & 16.5
\end{array}\right]}
\end{aligned}
$$

7. (8 POINTS) Show that the set, together with the indicated operations, is not a vector space by identifying one of the ten vector space axioms that fail.
$W=\{(x, y): x, y \in R, x \geq 0\}$ with the standard operations in R^{2}.
Let $(x, y)=(1,2) \in W$, and let $c=-3$
$c(x, y)=-3(1,2)=(-3,-6) \notin W$ since -3 isn't positive.
8. (8 POINTS) Please solve the linear system by hand using elementary row operations.

$$
\begin{aligned}
& -x+y+2 z=1 \\
& 2 x+3 y+z=-2 \\
& 5 x+4 y+2 z=4 \\
& {\left[\begin{array}{ccc:c}
-1 & 1 & 2 & 1 \\
2 & 3 & 1 & -2 \\
5 & 4 & 2 & 4
\end{array}\right]} \\
& \downarrow \\
& 2 R_{1}+R_{2} \rightarrow R_{2} \\
& {\left[\begin{array}{ccc:c}
-1 & 1 & 2 & 1 \\
0 & 5 & 5 & 0 \\
5 & 4 & 2 & 4
\end{array}\right]} \\
& 5 R_{1}+R_{3} \rightarrow R_{3} \\
& {\left[\begin{array}{ccc:c}
-1 & 1 & 2 & 1 \\
0 & 5 & 5 & : \\
0 & 9 & 12 & 9
\end{array}\right]} \\
& -9 R_{2}+5 R_{3} \rightarrow R_{3} \\
& {\left[\begin{array}{ccc:c}
-1 & 1 & 2 & 1 \\
0 & 5 & 5 & 0 \\
0 & 0 & 15 & 45
\end{array}\right]} \\
& \frac{1}{15} R_{3}^{\downarrow} \rightarrow R_{3}, \frac{1}{5} R_{2} \rightarrow R_{2} \\
& \left.\left[\begin{array}{ccc:c}
-1 & 1 & 2 & 1 \\
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 3
\end{array}\right] \xrightarrow{0} \begin{array}{ccc:c}
0 & 1 & 3 \\
\downarrow & & \\
-1 R_{1} & \rightarrow R_{1} \\
{\left[\begin{array}{ccc}
1 & 0 & 0
\end{array}\right.} & 2 \\
0 & 1 & 0 & -3 \\
0 & 0 & 1 & 3
\end{array}\right]
\end{aligned}
$$

9. (8 POINTS) Let $\mathbf{v}_{1}=(10,-5), \mathbf{v}_{2}=(7,-2)$, and $\mathbf{u}=(-21,11)$. If possible, please write \mathbf{u} as a linear combination of \mathbf{v}_{1} and \mathbf{v}_{2}.

$$
\begin{aligned}
& c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}=\vec{u} \\
& c_{1}(10,-5)+c_{2}(7,-2)=(-21,11) \\
& 10 c_{1}+7 c_{2}=-21 \\
& -5 c_{1}-2 c_{2}=11 \\
& {\left[\begin{array}{cc:c}
10 & 7 & -21 \\
-5 & -2 & 11
\end{array}\right]} \\
& \downarrow \\
& R_{1}+2 R_{2} \rightarrow R_{2} \\
& \left.\left[\begin{array}{ccc}
10 & 7 & -21 \\
0 & 3 & 1
\end{array}\right] \rightarrow \begin{array}{l}
-\frac{7}{3}(10,-5)+\frac{1}{3}(7,-2)=(-21,11) \\
c_{1}=-\frac{1}{3}, c_{2}=\frac{1}{3}
\end{array}\right]
\end{aligned}
$$

10. (8 POINTS) Determine whether $S=\{(-2,5),(6,-1)\}$ is a basis for R^{2}.

Spanning: Let $\vec{u}=\left(u_{1}, u_{2}\right) \rightarrow u_{1}, u_{2} \in \mathbb{R}$

$$
\text { So } S \text { spans } R^{2}
$$

Linear Independence:

$$
\begin{aligned}
& \text { idence: } \\
& \qquad c_{1}(-2,5)+c_{2}(6,-1)=(0,0) \\
& -2 c_{1}+6 c_{2}=0 \rightarrow-2 c_{1}+6\left(5 c_{1}\right)=0 \rightarrow 28 c_{1}=0 \rightarrow c_{1}=0 \\
& 5 c_{1}-c_{2}=0 \rightarrow c_{2}=5 c_{1} \rightarrow c_{2}=5(0)=0
\end{aligned}
$$

Since $c_{1}=c_{2}=0$, sis linearly independent.

$$
\begin{aligned}
& c_{1}(-2,5)+c_{2}(6,-1)=\left(u_{1}, u_{2}\right) \\
& -2 c_{1}+6 c_{2}=u_{1} \\
& 5 c_{1}-c_{2}=u_{2} \\
& \left.\left[\begin{array}{cc}
-2 & 6!u_{1} \\
5 & -1: u_{2}
\end{array}\right] \xrightarrow{5 R_{1}+2 R_{2} \rightarrow R_{2}}\left[\begin{array}{cc:c}
-2 & 6 & u_{1} \\
0 & 28: 5 u_{1}+2 u_{2}
\end{array}\right]\right] \\
& {\left[\begin{array}{l}
-28 R_{1}+6 R_{2} \rightarrow R_{1} \\
\left.\rightarrow\left[\begin{array}{ll}
-2 & -28 u_{1}+6\left(5 u_{1}+2 u_{2}\right) \\
0 & 28 \\
0 & 15 u_{1}+2 u_{2}
\end{array}\right] \rightarrow \begin{array}{l}
-2 c_{1}=2 u_{1}+12 u_{2} \rightarrow c_{1}=-u_{1}-6 u_{2} \\
28 c_{2}=5 u_{1}+2 u_{2} \rightarrow c_{2}=\frac{5}{28} u_{1}+\frac{1}{14} u_{2}
\end{array}\right]
\end{array}\right.}
\end{aligned}
$$

11. (10 POINTS) A college dormitory houses 300 students. Those who watch an hour or more of television on any day always watch for less than an hour the next day. One-fourth of those who watch television for less than an hour one day will watch an hour or more the next day. Half of the students watched television for an hour or more today.
a. Please find the matrix of transition.

$$
P=\left[\begin{array}{ll}
0 & 1 / 4 \\
0 & 3 / 4
\end{array}\right]^{\geq 1 \mathrm{hr}} \quad X_{0}=\left[\begin{array}{c}
150 \\
150
\end{array}\right]<1 \mathrm{hr}
$$

b. How many will watch television for an hour or more tomorrow?

$$
P X_{0}=\left[\begin{array}{ll}
0 & 1 / 4 \\
1 & 3 / 4
\end{array}\right]\left[\begin{array}{l}
150 \\
150
\end{array}\right]=\left[\begin{array}{l}
37.5 \\
262.5
\end{array}\right]=x_{1}
$$

Approximately 38 students will watch television for an hour or more tomorrow,
c. How many will watch television for an hour or more in two days?

$$
P\left(X_{1}\right)=\left[\begin{array}{ll}
0 & 1 / 4 \\
1 & 3 / 4
\end{array}\right]\left[\begin{array}{l}
37.5 \\
262.5
\end{array}\right]=\left[\begin{array}{l}
65.6 \\
234.4
\end{array}\right]
$$

Approximately 66 students will watch television for an how or more in two days.

